Quaternary, in the geologic history of Earth, a unit of time within the Cenozoic Era, beginning 2,588,000 years ago and continuing to the present day. The Quaternary has been characterized by several periods of glaciation (the “ice ages” of common lore), when ice sheets many kilometres thick have covered vast areas of the continents in temperate areas. During and between these glacial periods, rapid changes in climate and sea level have occurred, and environments worldwide have been altered. These variations in turn have driven rapid changes in life-forms, both flora and fauna. Beginning some 200,000 years ago, they were responsible for the rise of modern humans.

The Quaternary is one of the best-studied parts of the geologic record. In part this is because it is well preserved in comparison with the other periods of geologic time. Less of it has been lost to erosion, and the sediments are not usually altered by rock-forming processes. Quaternary rocks and sediments, being the most recently laid geologic strata, can be found at or near the surface of the Earth in valleys and on plains, seashores, and even the seafloor. These deposits are important for unraveling geologic history because they are most easily compared to modern sedimentary deposits. The environments and geologic processes earlier in the period were similar to those of today; a large proportion of Quaternary fossils are related to living organisms; and numerous dating techniques can be used to provide relatively precise timing of events and rates of change.

The Quaternary environment

Glaciation

The most distinctive changes seen during the Quaternary were the advances of ice into temperate latitudes of the Northern Hemisphere. The glacial landscapes were dominated by ice several kilometres thick that covered all but the highest peaks in the interior. Grounded ice extended onto the continental shelf in the Barents, Kara, and Laptev seas, much of the Canadian coast, and the Gulf of Maine. Ice shelves similar to those seen today in the Ross and Weddell seas of Antarctica are postulated to have existed in the Norwegian Sea and the Gulf of Maine and were likely in many other settings. High ice and domes of cold high-pressure air displaced the polar jet streams, steering storm tracks south to the glacial margins and beyond. In addition, cold sinking air over the ice sheets created strong down-flowing katabatic winds, drying land near the glaciers. Land close to the glaciers and affected by the cold temperatures (periglacial landscapes) were areas of permafrost and tundra. Farther away, vast dry, cold grasslands (steppes) were formed.

Glacial remnants

Landforms

There have certainly been previous periods of geologic time in which glaciers were extensive (during the late Precambrian and the Permian Period, for example), but the Quaternary has left a distinctive imprint on modern landscapes and surface environments. The most distinguishing characteristics of the Quaternary in middle and high latitudes are glacial sediments and evidence of glacial erosion.

Lakes

Extensive glacial lakes were formed by a variety of glacial-age dams. They could form simply as pools in the depressions created by the ice sheets, in eroded scours, such as the Great Lakes and the Finger Lakes of New York, by ice dams, or by dams of glacial sediments. Glacial lakes of various sizes ringed the decaying Laurentide Ice Sheet in North America, such as Canada’s former Lake Agassiz, leaving extensive laminated silts and clays. Remnants of glacial lakes are found in the great arc of Canadian lakes such as Great Bear, Great Slave, Athabasca, Winnipeg, and the Great Lakes. Similar deposits and remnant lakes are found in Europe and Asia, with evidence that glacial-age rivers may have flowed extensively to the south into the Aral, Caspian, and Black seas.

Quaternary life

The length of the Quaternary is short relative to geologic and evolutionary time scales, but the rate of evolutionary change during this period is high. It is a basic tenet of ecology that disturbance increases diversity and ultimately leads to evolutionary pressures. The Quaternary is replete with forces of disturbance and evidence for evolution in many living systems. Examples of disturbance include the direct destruction of habitat by glacial advance, the drying of vast plains, increases in size of lakes, a decrease in the area of warm, shallow, continental shelves and carbonate banks, and shifts in ocean currents and fronts.

Ninety percent of the animals represented by Quaternary fossils were recognized by Charles Lyell as being similar to modern forms. Many genera and even species of shellfish, insects, marine microfossils, and terrestrial mammals living today are similar or identical to their Pleistocene ancestors. However, many Pleistocene fossils demonstrate spectacular differences. For example, sabre-toothed cats, woolly mammoths, and cave bears are widely known from museum exhibits and popular literature but are extinct today. Expansion of some environments, such as vast dry steppe grasslands, were favourable areas for bison, horses, antelopes, and their predators. Some species with modern relatives, including the woolly mammoth and woolly rhinoceros, were clearly adapted to the cold tundra regions because of their heavy fur. Some, such as the modern musk ox, would have been right at home.

The Pleistocene is generally recognized as a time of gigantism in terrestrial mammals. The causes for such gigantism are not completely understood, but they most likely include a response to colder conditions and an improved ability to resist predators and reach food higher on shrubs or buried beneath snow. Examples of giant Pleistocene mammals include the giant beaver, giant sloth, stag-moose, dire wolf, giant short-faced bear of the New World, and cave bear of the Old World. The woolly mammoth and mastodon are rivaled in size only by modern elephants. Other animals displayed extremes in body architecture, for example, the huge canine teeth of sabre-toothed cats. It is suggested that an “arms race” between predators and their prey led to these extreme developments.

Megathreads and spaces to hang out:

reminders:

  • 💚 You nerds can join specific comms to see posts about all sorts of topics
  • 💙 Hexbear’s algorithm prioritizes struggle sessions over upbears
  • 💜 Sorting by new you nerd
  • 🌈 If you ever want to make your own megathread, you can go here nerd
  • 🐶 Join the unofficial Hexbear-adjacent Mastodon instance toots.matapacos.dog

Links To Resources (Aid and Theory):

Aid:

Theory:

Remember nerds, no current struggle session discussion here to the general megathread, i will ban you from the comm and remove your comment, have a good day/night :meow-coffee:

    • makotech222 [he/him]A
      ·
      2 years ago

      Thanks, much appreciated. Things are clearing up pretty well today. No more headache, so just random coughing and fatigue. Will be back at work tomorrow most likely.